DJ-1 promotes the proteasomal degradation of Fis1: implications of DJ-1 in neuronal protection.
نویسندگان
چکیده
Mutations in DJ-1/PARK7 (Parkinson protein 7) have been identified as a cause of autosomal-recessive PD (Parkinson's disease) and the antioxidant property of DJ-1 has been shown to be involved in the regulation of mitochondrial function and neuronal cell survival. In the present study, we first found that the DJ-1 transgene mitigated MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced DA (dopamine) neuron cell death and cell loss. We then observed that the protein levels of DJ-1 were significantly decreased, whereas levels of Fis1 [fission 1 (mitochondrial outer membrane) homologue] were noticeably increased in the striatum of MPTP-treated mice. In addition to our identification of RNF5 (RING-finger protein-5) as an E3-ligase for Fis1 ubiquitination, we demonstrated the involvement of the DJ-1/Akt/RNF5 signalling pathway in the regulation of Fis1 proteasomal degradation. In other experiments, we found that Akt1 enhances the mitochondrial translocation and E3-ligase activity of RNF5, leading to Fis1 degradation. Together, the identification of Fis1 degradation by DJ-1 signalling in the regulation of oxidative stress-induced neuronal cell death supplies a novel mechanism of DJ-1 in neuronal protection with the implication of DJ-1 in a potential therapeutic avenue for PD.
منابع مشابه
Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress.
The identification of rare monogenic forms of Parkinson's disease (PD) has provided tremendous insight into the molecular pathogenesis of this disorder. Heritable mutations in alpha-synuclein, parkin, DJ-1 and PINK1 cause familial forms of PD. In the more common sporadic form of PD, oxidative stress and derangements in mitochondrial complex-I function are considered to play a prominent role in ...
متن کاملSensitivity to Oxidative Stress in DJ-1-Deficient Dopamine Neurons: An ES- Derived Cell Model of Primary Parkinsonism
The hallmark of Parkinson's disease (PD) is the selective loss of dopamine neurons in the ventral midbrain. Although the cause of neurodegeneration in PD is unknown, a Mendelian inheritance pattern is observed in rare cases, indicating a genetic factor. Furthermore, pathological analyses of PD substantia nigra have correlated cellular oxidative stress and altered proteasomal function with PD. H...
متن کاملThe Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization.
Loss-of-function DJ-1 mutations can cause early-onset Parkinson's disease. The function of DJ-1 is unknown, but an acidic isoform accumulates after oxidative stress, leading to the suggestion that DJ-1 is protective under these conditions. We addressed whether this represents a posttranslational modification at cysteine residues by systematically mutating cysteine residues in human DJ-1. WT or ...
متن کاملNovel association of DJ-1 with HER3 potentiates HER3 activation and signaling in cancer
HER3/ErbB3 has emerged as a new therapeutic target for cancer. Currently, more than a dozen anti-HER3 antibodies are in clinical trials for treatment of various cancers. However, limited understanding of the complex HER3 signaling in cancer and lack of established biomarkers have made it challenging to stratify cancer patients who can benefit from HER3 targeted therapies. In this study, we iden...
متن کاملRegulation of DJ-1 by Glutaredoxin 1 in Vivo: Implications for Parkinson's Disease.
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, caused by the degeneration of the dopaminergic neurons in the substantia nigra. Mutations in PARK7 (DJ-1) result in early onset autosomal recessive PD, and oxidative modification of DJ-1 has been reported to regulate the protective activity of DJ-1 in vitro. Glutathionylation is a prevalent redox modificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 447 2 شماره
صفحات -
تاریخ انتشار 2012